3.182 \(\int \frac{(a+a \sec (c+d x))^3}{\sec ^{\frac{3}{2}}(c+d x)} \, dx\)

Optimal. Leaf size=131 \[ \frac{20 a^3 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} \text{EllipticF}\left (\frac{1}{2} (c+d x),2\right )}{3 d}+\frac{2 a^3 \sin (c+d x) \sqrt{\sec (c+d x)}}{d}+\frac{2 a^3 \sin (c+d x)}{3 d \sqrt{\sec (c+d x)}}+\frac{4 a^3 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{d} \]

[Out]

(4*a^3*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/d + (20*a^3*Sqrt[Cos[c + d*x]]*Ellipti
cF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(3*d) + (2*a^3*Sin[c + d*x])/(3*d*Sqrt[Sec[c + d*x]]) + (2*a^3*Sqrt[Sec
[c + d*x]]*Sin[c + d*x])/d

________________________________________________________________________________________

Rubi [A]  time = 0.137819, antiderivative size = 131, normalized size of antiderivative = 1., number of steps used = 12, number of rules used = 6, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.261, Rules used = {3791, 3769, 3771, 2641, 2639, 3768} \[ \frac{2 a^3 \sin (c+d x) \sqrt{\sec (c+d x)}}{d}+\frac{2 a^3 \sin (c+d x)}{3 d \sqrt{\sec (c+d x)}}+\frac{20 a^3 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 d}+\frac{4 a^3 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{d} \]

Antiderivative was successfully verified.

[In]

Int[(a + a*Sec[c + d*x])^3/Sec[c + d*x]^(3/2),x]

[Out]

(4*a^3*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/d + (20*a^3*Sqrt[Cos[c + d*x]]*Ellipti
cF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(3*d) + (2*a^3*Sin[c + d*x])/(3*d*Sqrt[Sec[c + d*x]]) + (2*a^3*Sqrt[Sec
[c + d*x]]*Sin[c + d*x])/d

Rule 3791

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Int[Expand
Trig[(a + b*csc[e + f*x])^m*(d*csc[e + f*x])^n, x], x] /; FreeQ[{a, b, d, e, f, m, n}, x] && EqQ[a^2 - b^2, 0]
 && IGtQ[m, 0] && RationalQ[n]

Rule 3769

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(Cos[c + d*x]*(b*Csc[c + d*x])^(n + 1))/(b*d*n), x
] + Dist[(n + 1)/(b^2*n), Int[(b*Csc[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1] && Integer
Q[2*n]

Rule 3771

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rule 3768

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> -Simp[(b*Cos[c + d*x]*(b*Csc[c + d*x])^(n - 1))/(d*(n -
 1)), x] + Dist[(b^2*(n - 2))/(n - 1), Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1
] && IntegerQ[2*n]

Rubi steps

\begin{align*} \int \frac{(a+a \sec (c+d x))^3}{\sec ^{\frac{3}{2}}(c+d x)} \, dx &=\int \left (\frac{a^3}{\sec ^{\frac{3}{2}}(c+d x)}+\frac{3 a^3}{\sqrt{\sec (c+d x)}}+3 a^3 \sqrt{\sec (c+d x)}+a^3 \sec ^{\frac{3}{2}}(c+d x)\right ) \, dx\\ &=a^3 \int \frac{1}{\sec ^{\frac{3}{2}}(c+d x)} \, dx+a^3 \int \sec ^{\frac{3}{2}}(c+d x) \, dx+\left (3 a^3\right ) \int \frac{1}{\sqrt{\sec (c+d x)}} \, dx+\left (3 a^3\right ) \int \sqrt{\sec (c+d x)} \, dx\\ &=\frac{2 a^3 \sin (c+d x)}{3 d \sqrt{\sec (c+d x)}}+\frac{2 a^3 \sqrt{\sec (c+d x)} \sin (c+d x)}{d}+\frac{1}{3} a^3 \int \sqrt{\sec (c+d x)} \, dx-a^3 \int \frac{1}{\sqrt{\sec (c+d x)}} \, dx+\left (3 a^3 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{1}{\sqrt{\cos (c+d x)}} \, dx+\left (3 a^3 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \sqrt{\cos (c+d x)} \, dx\\ &=\frac{6 a^3 \sqrt{\cos (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{\sec (c+d x)}}{d}+\frac{6 a^3 \sqrt{\cos (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{\sec (c+d x)}}{d}+\frac{2 a^3 \sin (c+d x)}{3 d \sqrt{\sec (c+d x)}}+\frac{2 a^3 \sqrt{\sec (c+d x)} \sin (c+d x)}{d}+\frac{1}{3} \left (a^3 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{1}{\sqrt{\cos (c+d x)}} \, dx-\left (a^3 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \sqrt{\cos (c+d x)} \, dx\\ &=\frac{4 a^3 \sqrt{\cos (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{\sec (c+d x)}}{d}+\frac{20 a^3 \sqrt{\cos (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{\sec (c+d x)}}{3 d}+\frac{2 a^3 \sin (c+d x)}{3 d \sqrt{\sec (c+d x)}}+\frac{2 a^3 \sqrt{\sec (c+d x)} \sin (c+d x)}{d}\\ \end{align*}

Mathematica [C]  time = 1.48802, size = 169, normalized size = 1.29 \[ \frac{a^3 \left (\cos \left (\frac{c}{2}\right )-i \sin \left (\frac{c}{2}\right )\right ) \left (\cos \left (\frac{c}{2}\right )+i \sin \left (\frac{c}{2}\right )\right ) \left (\frac{24 i \text{Hypergeometric2F1}\left (-\frac{1}{4},\frac{1}{2},\frac{3}{4},-e^{2 i (c+d x)}\right )}{\sqrt{1+e^{2 i (c+d x)}}}+2 \left (-10 i \sqrt{1+e^{2 i (c+d x)}} \sec (c+d x) \text{Hypergeometric2F1}\left (\frac{1}{4},\frac{1}{2},\frac{5}{4},-e^{2 i (c+d x)}\right )+\sin (c+d x)+3 \tan (c+d x)-6 i\right )\right )}{3 d \sqrt{\sec (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + a*Sec[c + d*x])^3/Sec[c + d*x]^(3/2),x]

[Out]

(a^3*(Cos[c/2] - I*Sin[c/2])*(Cos[c/2] + I*Sin[c/2])*(((24*I)*Hypergeometric2F1[-1/4, 1/2, 3/4, -E^((2*I)*(c +
 d*x))])/Sqrt[1 + E^((2*I)*(c + d*x))] + 2*(-6*I - (10*I)*Sqrt[1 + E^((2*I)*(c + d*x))]*Hypergeometric2F1[1/4,
 1/2, 5/4, -E^((2*I)*(c + d*x))]*Sec[c + d*x] + Sin[c + d*x] + 3*Tan[c + d*x])))/(3*d*Sqrt[Sec[c + d*x]])

________________________________________________________________________________________

Maple [A]  time = 1.462, size = 172, normalized size = 1.3 \begin{align*} -{\frac{4\,{a}^{3}}{3\,d} \left ( 2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}\cos \left ( 1/2\,dx+c/2 \right ) +5\,{\it EllipticF} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) \sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}-3\,{\it EllipticE} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) \sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}-4\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}\cos \left ( 1/2\,dx+c/2 \right ) \right ) \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-1}{\frac{1}{\sqrt{2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+a*sec(d*x+c))^3/sec(d*x+c)^(3/2),x)

[Out]

-4/3*a^3*(2*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)+5*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*(2*sin(1/2*d*x+1/2
*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)-3*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*(2*sin(1/2*d*x+1/2*c)^2-1)
^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)-4*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c))/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d
*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (a \sec \left (d x + c\right ) + a\right )}^{3}}{\sec \left (d x + c\right )^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))^3/sec(d*x+c)^(3/2),x, algorithm="maxima")

[Out]

integrate((a*sec(d*x + c) + a)^3/sec(d*x + c)^(3/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{a^{3} \sec \left (d x + c\right )^{3} + 3 \, a^{3} \sec \left (d x + c\right )^{2} + 3 \, a^{3} \sec \left (d x + c\right ) + a^{3}}{\sec \left (d x + c\right )^{\frac{3}{2}}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))^3/sec(d*x+c)^(3/2),x, algorithm="fricas")

[Out]

integral((a^3*sec(d*x + c)^3 + 3*a^3*sec(d*x + c)^2 + 3*a^3*sec(d*x + c) + a^3)/sec(d*x + c)^(3/2), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} a^{3} \left (\int \frac{1}{\sec ^{\frac{3}{2}}{\left (c + d x \right )}}\, dx + \int \frac{3}{\sqrt{\sec{\left (c + d x \right )}}}\, dx + \int 3 \sqrt{\sec{\left (c + d x \right )}}\, dx + \int \sec ^{\frac{3}{2}}{\left (c + d x \right )}\, dx\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))**3/sec(d*x+c)**(3/2),x)

[Out]

a**3*(Integral(sec(c + d*x)**(-3/2), x) + Integral(3/sqrt(sec(c + d*x)), x) + Integral(3*sqrt(sec(c + d*x)), x
) + Integral(sec(c + d*x)**(3/2), x))

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (a \sec \left (d x + c\right ) + a\right )}^{3}}{\sec \left (d x + c\right )^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))^3/sec(d*x+c)^(3/2),x, algorithm="giac")

[Out]

integrate((a*sec(d*x + c) + a)^3/sec(d*x + c)^(3/2), x)